Massachusetts

Weather and Fire Danger- Rapid Wildfire Risk Assessment

Prepared by: Eastern Area - Decision Support Group 11/13/2024

Executive Summary

In response to expanding and elevated wildfire risk and an uptick in wildfire occurrence a wildfire risk analysis was conducted to assess the potential and expected fire environment in the State of Massachusetts for the remainder of the fall fire season. The analysis included a look at the current fire environment and extended forecast, fuels compared to normal for the time of year, National Fire Danger Rating System's Fire Danger Indices, and fire occurrence. *For a glossary of terms used in this assessment refer to the final page*

Rapid Assessment Findings and Recommendations

Based on current fuel conditions and forecasted weather conditions, the most likely scenario is an above average level of wildfire activity for the next week. This level of activity will likely cause some slight increase in firefighting resources being mobilized within a state.

- Greatest concern for elevated wildfire risk throughout the state continues to be Friday November 14, 2024. Combinations of low relative humidities (low 20s), critically dry and droughty fuels, and gusty winds (gusts in the low to mid-20s) should trigger Red Flag Warnings.
- Saturday November 15, 2024, will see increased winds again (sustained mid-teens, gusts mid to upper-20s) however, relative humidity values in the mid-30s should help moderate wildfire risk. Significant rates of spread and erratic fire behavior should still be expected on any new or extended attack incidents this day.
- Mild temperatures in the upper 40s and low 50s will persist over the New England Metro and the Mid-Atlantic States through Saturday afternoon.
- Mainly dry conditions are still being indicated in the NOAA 7-day total precipitation forecast into the mid-week over Massachusetts https://www.wpc.ncep.noaa.gov/qpf/p168i.gif
- The effects of long-term drought, coupled with below normal winter 2024/2024 precipitation, *could result in significantly elevated wildfire risk in the spring of 2025*. Wildfire managers should monitor this throughout the winter season

- Fire managers must consider potential extreme fire behavior, which can be expected with the current drought conditions under moderate fire weather conditions. As fire danger indices exceed the 97th percentile, extreme fire behavior and rapid-fire spread characteristics should be expected. Tactics should be altered to provide for firefighter and public safety.
- Do not expect any fire to be routine. Be prepared to utilize indirect tactics with extended mop-up. Utilize aerial supervision to help direct crews and keep them informed on fire behavior. Ensure that LCES is in place before engaging on any fire. Remember to STOP, THINK, and TALK before you ACT... and actively look for ways to minimize risk to firefighters in what is forecast to be a period of very high fire danger.
- Augmentation of initial attack resources will likely be required throughout the fall. This will result from increased fire behavior, fire spread, and longer mop-up times due to drought stressed fuels and soil.
- Additional resources, both ground and aviation, may be needed.

Modeled Snow Depth Departure from Normal (Daily) for 2024 March 8, 6:00 UTC

Precipitation Analysis

The winter of 2023/2024 saw far below normal snowpack throughout the state. In early-March, snow depth estimates from NOAA ranged between 2-16 inches below normal. Late spring precipitation helped moderate conditions until late August when a dryer than normal pattern developed and has ensued through early November.

The past 60-days has seen between 16-25 % of normal precipitation over most of Massachusetts. The southeast side of the state continues to observe moderated conditions thanks to increased precipitation levels.

Precipitation observed in the past week has been negligible and ineffective in moderating any wildfire risk in the long-term. Overall, the fire environment has experienced a dry and droughty 60 days and fuels conditions are at critical levels. Deficits over the past 60 days range between near normal over Cape Cod to -8.0 inches in the southwest part of the state.

Oxbow RAWS NFDRS Indices- Climatology Graphs

• Fire danger indices all trend above historic daily highs for this time of year. Longer term drying and drought have significantly amplified wildfire danger and risk.

Oxbow RAWS NFDRS Indices- Climatology Graphs

35

30

25

20

15

10

5

0

25

20

15

10

5

0

-Ava

-Max

-Min

1/1

-Avg

-Max

-Min

1000-Hour Fuel Moisture

10-Hour Fuel Moisture

- Herbaceous and woody fuel moistures reduced to fully cured ~7-10 days ahead of average for this time of year.
- 10 and 100-Hour timelag dead fuels remain at or below historical lows for this time of year, continuing to trend dryer.

Blue Hills RAWS NFDRS Indices- Climatology Graphs

- All indices at the Blue Hills RAWS are at or above historical maximum values and percentiles for this time of year.
- The relationship of these indices to precipitation deficits yield increased availability of fuels that are typically not seen this time of year.
- *Note that there is only 6 years of historical data for Blue Hills RAWS

Blue Hills RAWS NFDRS Indices- Climatology Graphs

9/1

FF+5.0 build 20240306 11/13/2024-14:45

11/1

1681 Wx Observations

12/1

Model: Y1P3

10/1

7/1

3 Day Periods

8/1

6/1

0

-Ava

-Max

-Min

1/1

3/1

2024

4/1

5/1

FF+5.0 build 20240306 11/13/2024-14:45

192101-BLUE HILLS 2018 - 2023

-Herbaceous and woody fuel moistures reduced to fully cured ~1 week ahead of average for this time of year. -1,000-hour fuel moisture is below average with Blue Hills RAWS continuing to trend below historic ranges. *Note that there is only 6 years of historical data for Blue Hills RAWS

Camp Edwards RAWS NFDRS Indices- Climatology Graphs

9/1

FF+5.0 build 20240306 11/13/2024-14:36

10/1

7/1

3 Day Periods

8/1

11/1

2572 Wx Observations

Model: Y1P16672

12/1

• All indices at the Camp Edwards RAWS remain above the average and are trending towards maximum values for this time of year. *Note that there is only 8 years of historical data for Camp Edwards RAWS

0.00

-Avg

-Max

-Min

1/1

3/1

4/1

2/1 2024 5/1

6/1

Camp Edwards RAWS NFDRS Indices- Climatology Graphs

11/1

11/1

Model: Y1P16672

12/1

Model: Y1P16672

12/1

-1,000-hour fuel moisture is below average with Camp Edwards RAWS continuing to trend below historic ranges. *Note that there is only 8 years of historical data for Camp Edwards RAWS

Current Drought Comparison

Intensity None

No Data

D0 (Abnormally Dry)

D1 (Moderate Drought) D2 (Severe Drought) D3 (Extreme Drought) D4 (Exceptional Drought)

Drought conditions have worsened over the past three months. Abnormally Dry (D0), Moderate (D1), and now Severe (D2) Drought Intensity have developed throughout the majority of Massachusetts. Most if not all wildfires within the state are being influenced by Moderate to Severe Drought and critically dry dead fuels. Elevated fire danger and dry fuel conditions will likely contribute to continued fire growth on any existing or new emerging incidents until substantial weather changes are experienced (i.e. increased Relative Humidity, Precipitation, and Cooler Temperatures).

Quantitative Precipitation Forecast

NOAA's Quantitative Precipitation Forecast describes negligible precipitation over Massachusetts over the next week. Days 6-7 of the QPF do show minimal amounts (0.01-0.10 inches) of precipitation moving into the state towards the middle of next week.

Weather Outlook

6–10-day weather outlook continue showing above normal temperatures while precipitation outlooks now lean towards above normal levels over this period

8–14-day weather outlook shows above normal temperatures while precipitation outlooks now lean towards near normal precipitation

3–4-week weather outlook shows likely above normal temperatures and lean towards below normal precipitation in the longer-term

Precipitation

7-Day Forecast Fire Behavior, Fire Danger, and Fire Weather

Statewide fire behavior summary:

Thursday and into the weekend show a greater potential for fire growth with low RH values and increasing winds.

Open **grass** fuel types will likely see 3-6' flame lengths and rates of spread between 20-40 ch/hr.

Moderate load **timber understory and litter** will be receptive to fire spread showing flame lengths around 2-9' and rates of spread approaching 25-45 ch/hr.

High load shrub (SH8), specifically within the **pine barrens**, can expect flame lengths (>10') and rates of spread (>30 ch/hr) depending on density and receptive fuels across the area. Current lack of moisture and drought stressed vegetation could allow for crown fire initiation where crown base heights are low (<3 meters). Increased winds with frontal passages could elevated the risk of crown fire.

Expect increased flame lengths (greater than 10') and rates of spread (>40-50 ch/hr) where fuel, wind and topography align. Lack of moisture could increase the resistance to containment as fires have the ability to burn into duff based on the availability of fuel.

Fire Behavior / Fire Danger / Fire Weather Forecasts

The intent of these forecasts is to offer a general overview of expected fire environment conditions over the next 7-days. The outputs are based on an NWS Point forecast over Devens, MA, and the fire behavior outputs are specific to that point location.

Devens, MA	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed
Weekly Summary	Nov 13	Nov 14	Nov 15	Nov 16	Nov 17	Nov 18	Nov 19	Nov 20
Max Temp, °F	45	46	49	53	57	56	54	52
/lin Temp, °F	26	21	25	37	38	40	40	35
Max RH, %	61	68	62	73	73	79	89	95
Min RH, %	26	23	30	54	43	53	54	58
Max Dewpoint, °F	14	15	26	37	35	40	40	38
Ain Dewpoint, °F	10	10	10	27	30	31	36	34
Max Wind, mph	7	6	8	10	9	9	8	7
Min Wind, mph	2	2	2	6	3	2	3	3
Max Wind Gust, time/dir.	12 PM	10 AM	1 PM 🕯	12 PM \$	12 PM 1	1 PM 🕈	12 PM 1	1 PM
Max Wind Gust, mph	16	13	17	23	20	17	16	15
Ain Wind Gust, mph	6	5	6	12	9	9	7	7
Max Cloud Cover, %	5	52	53	61	52	66	47	49
Ain Cloud Cover, %	2	2	34	21	11	30	28	28
Max Prob. of Precip., %	0	2	15	11	3	12	6	25
Max Haines	4	4	4	4	4	4	4	4
Max LAL	1	1	1	1	1	1	1	1
Max Mixing Height, ft	3440	2653	2791	3006	2955	4066	3809	1853
Ain Mixing Height, ft	395	369	433	479	450	454	437	403
Max Ventilation Rate, kt-f	t 38	27	42	57	35	81	66	24
Ain Ventilation Rate, kt-ft	2	3	3	4	3	2	3	2
Max LVORI	2	3						

		13-Nov		/	14-Nov			15-Nov			16-Nov			17-Nov			18	B-Nov	1	19-Nov		
	FM	ROS	FL	POI	ROS	FL	POI	ROS	FL	POI												
G	R2	21.3	3.5		18.4	3.3		25.5	3.8		31.1	4		28.5	3.9		26.9	3.8		22.9	3.5	
S	НЗ	2.6	1.9]	2.3	1.8		3.1	2		3.7	2.1		3.4	2.1		3.3	2		2.9	1.9	
T	U3	17.3	6	43	15	5.7	48	20.3	6.5	42	24.9	7	31	22.6	6.7	37	21.8	6.6	31	18.8	6.1	32
Т	L2	0.7	0.6]	0.6	0.6		0.8	0.6		0.9	0.6		0.8	0.6		0.8	0.6		0.7	0.6	
Т	L6	2.6	1.8		2.4	1.8		3.1	1.9		3.7	2		3.4	2		3.2	1.9		2.8	1.8	

ROS= Surface Rate of Spread (ch/hr) FL= Surface Flame Length (feet)
FL= Surface Flame Length (feet)
POI- Probability of Ignition
GR2 (102)= Grass, Low load
SH3 (143)= Shrub, Moderate Load
TU3 (163)= Timber Understory, Moderate Load
TL2 (182)= Timber Litter, Low Load
TL6 (186)= Timber Litter, Moderate Load

Fire Danger and Fire Weather Matrix

Northeastern Massachusetts																							
Weather Station:	Oxbov	v (1927	/01)		NFDRS	Fuel Ma	odel Y; 2	2018 *	Wind G	ust Spe	ed are i	not fore	cast thr	ough W	/IMS. va	lues dis	plaved	are					
NFDRS Station:	Oxbov	v (1927	/01)		2023 Hi	storica	l	C	bservat	ions				0	,		, ,						
Workbook created by	Brad Pietru	szka																					
																	NFD	RS & I	Fire W	/eathe	er For	ecast	•
		Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed
		10/30	10/31	11/1	11/2	11/3	11/4	11/5	11/6	11/7	11/8	11/9	11/10	11/11	11/12	11/13	11/14	11/15	11/16	11/17	11/18	11/19	11/20
	ERC Percentile	39%	5/%	6/%	5/%	75%	75%	79%	/5%	/1%	/5%	88%	88%	/1%	85%	90%	90%	95%	95%	95%	95%	93%	90%
	BI Percentile	01%	71%	85% 01%	01%	01%	01%	/8%	01%	95%	97%	91%	02%	97%	95%	0.2%	95%	99%	02%	97%	97%	95%	91%
	FRC	12	19	19170	91%	21	21	91% 22	<u>91%</u> 21	20	92%	<u>92%</u>	<u>92%</u> 25	<u>92%</u> 20	<u>92%</u>	26	26	<u> </u>	<u>92%</u>	<u> </u>	<u>92%</u>	<u> </u>	26
N	BI	0	13	16	14	15	14	15	16	18	19	17	16	19	18	16	18	20	20	19	19	18	17
F	KBDI	542	537	541	545	549	550	550	553	557	561	563	564	565	567	569	569	569	569	569	569	569	569
D	1 hr	26	13	12	14	12	15	11	11	11	10	9	10	12	11	10	12	11	11	13	13	15	16
R	10 hr	28	20	18	18	16	15	18	17	19	16	12	12	21	14	12	11	11	13	14	15	17	18
S	100 hr	17	20	20	19	19	18	18	20	20	20	18	17	17	18	17	16	16	15	14	15	15	15
	1000 hr	19	19	20	20	20	20	19	20	20	20	20	20	20	19	19	19	19	19	18	18	18	17
Liv	e Herbaceous	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Live Woody	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
w	Max Temp	78	79	76	59	60	57	72	77	71	67	57	51	66	51	49	44	52	55	57	57	57	54
e	Min RH	40%	41%	17%	34%	16%	44%	50%	50%	38%	26%	25%	46%	46%	43%	27%	23%	20%	21%	38%	40%	53%	52%
a t	Min Temp	43	49	48	38	30	30	42	58	44	38	30	27	47	34	27	21	19	37	36	39	39	36
h	Max RH	95%	98%	74%	70%	93%	89%	99%	92%	93%	95%	79%	97%	99%	69%	60%	68%	66%	70%	79%	82%	89%	96%
e r	Max Wind 5 7 8 4 7 7				7	6	8	5	8	6	7	6	9	5	4	7	10	6	6	5	5		
	Max Gust	12	18	30	14	14	19	18	19	23	25	26	16	19	25	16	T I						

Fire Behavior / Fire Danger / Fire Weather Forecasts

The intent of these forecasts is to offer a general overview of expected fire environment conditions over the next 7-days. The outputs are based on an NWS Point forecast over Monument Beach, MA, and the fire behavior outputs are specific to that point location.

Monument Beach, MA	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	
Weekly Summary	Nov 13	Nov 14	Nov 15	Nov 16	Nov 17	Nov 18	Nov 19	Nov 20	
Max Temp, °F	43	45	49	53	56	56	55	52	
Min Temp, °F	34	32	34	40	41	43	43	41	
Max RH, %	73	83	70	79	79	82	92	93	
Min RH, %	50	58	42	61	55	62	61	66	
Max Dewpoint, °F	26	32	33	41	40	43	42	42	
Min Dewpoint, °F	23	26	23	32	34	36	40	38	
Max Wind, mph	17	15	13	13	12	13	10	10	
Min Wind, mph	12	9	9	10	7	6	6	7	
Max Wind Gust, time/dir.	1 PM 🖌	10 AM 🖌	1 PM 🖌	9 AM 🖌	12 AM 🕯	12 PM 🔿	9 AM 🖌	12 PM 🖌	
Max Wind Gust, mph	29	24	24	23	22	20	18	17	
Min Wind Gust, mph	22	20	20	21	16	16	14	14	
Max Cloud Cover, %	29	47	61	58	45	64	42	58	
Min Cloud Cover, %	6	8	30	33	13	28	23	30	
Max Prob. of Precip., %	0	4	21	19	5	22	12	31	
Max Haines	4	4	4	3	4	4	4	4	
Max LAL	1	1	1	1	1	1	1	1	
Max Mixing Height, ft	3464	3123	2278	3058	2665	3932	3495	1910	
Min Mixing Height, ft	314	340	447	480	363	350	374	236	
Max Ventilation Rate, kt-ft	76	59	32	46	32	67	56	21	
Min Ventilation Rate, kt-ft	4	5	5	5	3	2	3	1	
Max LVORI	4	6							

	13	3-Nov	1	14	4-Nov	1	19	5-Nov	1	10	6-Nov	1	17	7-Nov		18	3-Nov	1	- 19	19-Nov		
FM	ROS	FL	POI	ROS	FL	POI																
GR2	65.2	5.7		50.6	5		44.7	4.8		41.3	4.5		37	4.3		41.3	4.5		28.7	3.8		
SH3	6.9	2.9		5.7	2.6		5	2.5	20	4.8	2.4		4.4	2.3		4.8	2.4		3.6	2.1		
SH8	42.7	14	20	36.1	13	26	30.9	12		30.4	12	27	27.7	11	27	30.4	12	27	22.3	10	27	
TU3	49.4	9.6	30	40.6	8.7	20	34.8	8.1	30	33.7	8	27	30.4	7.6	21	33.7	8 2	27	24	6.8	21	
TL2	1.6	0.8		1.4	0.8		1.2	0.7		1.2	0.7		1	0.7		1.2	0.7		0.8	0.6		
TL6	7.5	2.8		6	2.5		5.2	2.4		4.9	2.3		4.4	2.2		4.9	2.3		3.5	2		

RO	S= Surface Rate of Spread (ch/hr)
FL	= Surface Flame Length (feet)
PO	I- Probability of Ignition
GR	2 (102)= Grass, Low load
SH	3 (143)= Shrub, Moderate Load
SH	8 (148)= Shrub, High Load
TU	3 (163)= Timber Understory, Moderate Load
TL:	2 (182)= Timber Litter, Low Load
TL	6 (186)= Timber Litter, Moderate Load

Fire Danger and Fire Weather Matrix

Live Woody

W

e

а

Max Temp

Min Temp

Max Wind

Min RH

Max RH

Max Gust 12

41%

98%

40%

95%

17%

74%

34%

70%

16%

93%

44%

89%

50%

99%

50%

92%

38%

93%

26%

95%

25%

79%

46%

97%

46%

99%

43%

69%

42%

65%

46%

85%

31%

83%

31%

76%

49%

79%

51%

93%

61%

89%

South	Southeastern Massachusetts]			
Weather Station:	Camp E	dwar	ds (191	.204)	NFDRSI	Fuel Mo	odel Y; 2	2018 -	* Wind Gu	ust Spe	ed are r	not fore	cast thro	ough W	IMS. val	ues dis	plaved	are					
NFDRS Station:	Camp E	dwar	ds (191	.204)	2023 His	storica	l	C	observati	ons					,,		, ,						
Workbook created by	y Brad Pietrus	zka															NFD	RS & I	Fire W	 /eathe	er For	recast	[
[Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed
	ERC Percentile	10/30 61%	10/31 61%	11/1	72%	76%	11/4 72%	54%	11/6	11/7	11/8	11/9 89%	92%	11/11 54%	76%	76%	11/14	11/15 80%	11/16	11/1/	11/18	11/19	76%
	BI Percentile	48%	48%	48%	66%	66%	66%	66%	58%	83%	89%	83%	94%	48%	89%	83%	94%	97%	98%	89%	83%	83%	83%
	KBDI Percentile	71%	72%	73%	73%	74%	74%	74%	74%	75%	75%	76%	77%	77%	78%	78%	78%	78%	78%	78%	78%	78%	78%
N	ERC	14	14	12	16	17	16	13	12	15	17	21	22	13	17	17	17	18	20	20	18	18	17
F	BI	11	11	11	13	13	13	13	12	15	16	15	17	11	16	15	17	18	19	16	15	15	15
D	KBDI	143	148	155	162	168	170	171	175	180	187	194	197	199	203	207	208	208	208	208	208	208	208
R	1 hr	18	17	19	14	13	14	16	18	11	13	9	12	18	11	13	15	13	13	14	16	16	17
S	10 hr	23	22	21	16	17	17	21	20	18	14	12	11	26	17	14	15	14	15	16	20	19	20
	100 hr	16	19	20	20	19	19	19	21	21	19	17	16	18	20	20	19	18	17	16	16	17	18
	ive Herbscour	20	20	20	20	20	20	20	21	21	21	21	20	20	20	20	20	20	20	20	19	19	19
L	ive nerbaceous	49	50	30	30	30	50	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30

61%

93%

Fire Danger and Fire Weather Matrix

	Eastern Massachesetts										adiatior	n and W	ind Gus	st Speed	are no	t foreca	st throu	igh WIM	IS, value	es				
We	ather Station:	Blue Hi	lls (19	92101)		NFDRS	Fuel Mo	odel Y;	di 2018 *E	splayed Burn Pei	d are ob riod Inc	oservati dex (BPI	ons) = (Tem	nperatu	re ÷ Rela	ative Hu	midity)	x Wind	speed					
NFC	DRS Station:	Blue Hi	lls (19	92101)		2023 His	storica	ι	*E	ERC2 x V)% drier	Vind ref	flects th	e comp hit a 23	oundin	g influe ase in fi	nce of d	Iry fuels	combi	ned wit	h wind.				
Wor	rkbook created by Brad	d Pietrus	szka, p	please	send a	ny bug r	eports	to	wi	indspee	ed.	VIII OAIII	511 1 20		u 50 m m				anne					
																		NFD	RS & I	-ire W	/eath	er For	ecast	:
			Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed
			10/30	10/31	11/1	11/2	11/3	11/4	11/5	11/6	11/7	11/8	11/9	11/10	11/11	11/12	11/13	11/14	11/15	11/16	11/17	11/18	11/19	11/20
	ERC	Percentile	70%	78%	66%	70%	86%	78%	84%	84%	78%	86%	91%	92%	84%	86%	90%	88%	92%	94%	94%	94%	94%	92%
	BI	Percentile	64%	81%	81%	64%	81%	81%	94%	94%	88%	96%	96%	97%	88%	94%	91%	96%	97%	98%	97%	96%	96%	94%
	KBDI	FPC	95%	95%	95%	95%	95%	95%	95%	95%	96%	90%	96%	96%	90%	90%	96%	96%	90%	96%	90% 20	96%	96%	96%
	N	BI	13	15	15	13	15	15	18	18	16	20	19	27	16	18	17	24 19	27	20	20	19	19	18
	F	KBDI	535	537	540	544	548	549	549	552	557	562	564	565	566	568	570	570	570	570	570	570	570	570
	D	1 hr	17	11	12	14	11	15	11	10	10	9	8	9	12	10	10	12	10	11	12	13	14	15
	ĸ	10 hr	22	20	21	17	14	16	18	16	18	15	12	11	20	17	13	12	11	12	13	14	16	17
	2	100 hr	16	19	20	20	19	18	18	20	20	20	18	17	17	18	19	18	17	16	15	15	15	15
		1000 hr	19	19	20	20	20	20	19	19	20	20	20	19	19	19	19	19	19	19	18	18	18	17
	Live He	rbaceous	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Liv	e Woody	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
	w N	lax Temp	72	77	80	56	52	51	75	82	71	65	54	61	69	55	50	45	52	55	59	59	59	56
	e a -	Min RH	58%	40%	32%	52%	33%	57%	48%	42%	34%	27%	21%	28%	42%	38%	34%	31%	20%	20%	37%	37%	49%	51%
	t N	lin Temp	48	51	50	37	28	25	48	61	43	37	31	25	49	35	29	27	25	38	39	40	40	38
	h	Max RH	100%	100%	89%	87%	100%	100%	100%	85%	94%	90%	62%	87%	100%	99%	60%	71%	57%	70%	70%	82%	85%	92%
	e N	ax Wind	5	4	6	4	3	4	8	9	6	8	4	7	7	6	8	7	8	10	7	6	6	6
		viax Gust	15	12	18	12	11	11	19	26	19	23	18	1/	19	19	15							-

14

Glossary of Wildland Fire and Weather Terms

National Fire Danger Rating System (NFDRS)

- **NFDRS** is a system that allows fire managers to estimate today's or tomorrow's fire danger for a given area. Managers use NFDRS to input data and to receive information used to determine fire danger in their area. NFDRS is based on historical weather observations at *Remote Automated Weather Stations (RAWS)*.
- Energy Release Component (ERC) is a calculated output of the NFDRS. The ERC is a number related to the available energy (BTU) per unit area (square foot) within the flaming front at the head of a fire. ERC has memory and as live fuels cure and live fuels dry, the ERC will increase.
- Burning Index (BI) is a number related to the contribution of fire behavior to the effort of containing a fire. The BI (difficulty of control) is derived from a combination of Spread Component (how fast it will spread) and Energy Release Component (how much energy will be produced).
- *Keetch-Byram Drought Index (KBDI)* assesses the risk of fire by representing the net effect of evapotranspiration and precipitation in producing cumulative moisture deficiency in deep duff and upper soil layers.
 - The *KBDI* attempts to measure the amount of precipitation necessary to return the soil to full field capacity. The index ranges from zero, the point of no moisture deficiency, to 800, the maximum drought that is possible, and represents a moisture regime from 0 to 8 inches of water through the soil layer.
- Ignition Component (IC) relates to the probability of a firebrand producing a fire that will require suppression action. It is mainly a function of the 1-hour time lag (fine fuels) fuel moisture content and the temperature of the receptive fine fuels. IC has no units. A percentage of probability from 1-100.
- Spread Component (SC) is a rating of the forward rate of spread of a head fire. It integrates the effect of wind, slope, and fuel bed and fuel particle properties. The daily variations are caused by the changes in the wind and moisture contents of the live fuels and the dead fuel time lag classes of 1, 10, and 100 hr.
- **Percentile,** in the context of NFDRS, is a value on a scale of one hundred that indicates the percent of distribution that fire danger indices rank, as based on historic occurrence. i.e., the 97th percentile for an NFDRS index means that only 3% of the historic records held a value higher, while 97% were lower.

Fire Behavior Attributes

- **Rates of Spread (ROS)** is the surface rate of spread in chains per hour. One chain is equal to 66 feet.
- *Flame Length (FL)* is the length of the flame on the surface from base to tip (not vertically).
- **Probability of Ignition (PIO)** is the probability of a fire brand igniting at the surface.

Fire Behavior Fuel Models

- GR2 (102) is low load, dry climate grass
- SH3 (143) is moderate load, humid climate shrub
- TL2 (182) is low load broadleaf litter
- TL6 (186) is moderate load broadleaf litter

Live and Dead Fuel Moistures used in both NFDRS and Fire Behavior Calculation

- **1-** *Hour Fuel* **(1 HR)** is a dead fuel, sized less than ¼ inch, with a time lag of 1 hour; meaning these fuels typically take 1 hour to cure.
- **10-Hour Fuel (10 HR)** is a dead fuel, sized between ¼ and 1 inch, with a time lag of 10 hours; meaning these fuels typically take 10 hours to cure.
- **100-Hour Fuel (100 HR)** is a dead fuel, sized between 1 and 3 inch, with a time lag of 100 hours; meaning these fuels typically take 100 hours to cure.
- **1000-Hour Fuel (1000 HR)** is a dead fuel, sized over 3 inches, with a time lag of 1000 hours; meaning these fuels typically take 1000 hours to cure.
- Live Herbaceous and Woody Fuel Moisture values are important for fire spread models as they offer a dynamic fuel moisture value that should typically parallel those live herbaceous and woody fuel moistures being experienced within vegetation in which wildfires are spreading. The lower the value the dryer.